Atmospheric CO₂ concentration

AR5 WGI SPM - Approved version / subject to final copyedit

Atmospheric CO2 over the last 800000 years

A Progression of Understanding: Greater and Greater Certainty in Attribution

AR1 (1990): "unequivocal detection not likely for a decade"

AR2 (1995): "balance of evidence suggests **discernible** human influence"

AR3 (2001): "most of the warming of the past 50 years is **likely** (odds 2 out of 3) due to human activities"

AR4 (2007): "most of the warming is **very likely** (odds 9 out of 10) due to greenhouse gases"

has been the dominant cause ... »

Atmospheric CO₂ concentration

Most CMIP5 runs are based on the concentrations, but emissions-driven runs are available for RCP 8.5

AR5, chapter 12. WGI-Adopted version / subject to final copyedit

Global surface temperature change for the end of the 21st century is *likely* to exceed 1.5°C relative to 1850 for all scenarios

Adapted from: International Geosphere Biosphere Programme Report no.6, Global Changes of the Past, July1988

18-20000 years ago (Last Glacial Maximum)

With permission from Dr. S. Joussaume, in « Climat d'hier à demain », CNRS éditions.

Today, with +4-5°C globally

With permission from Dr. S. Joussaume, in « Climat d'hier à demain », CNRS éditions.

RCP2.6

Change in average surface temperature (1986–2005 to 2081–2100)

We have a choice.

Projected Change in Precipitation

AR5 WGI Regional Atlas

- Addition to previous reports
- > 70 pages of maps, for RCP4.5 only: temperature and precipitation changes (winter & summer average climate, including model uncertainties)
- Other RCPs & seasons will be available as suppl. material later

AR5 WGI SPM - Approved version / subject to final copyedit

Regional Atlas - «Central Europe», summer temp.

AR5 WGI SPM - Approved version / subject to final copyedit

North Europe - Map of temperature changes: 2081–2100 with respect to 1986–2005 in the RCP8.5 scenario (annual)

Regional Atlas - «Central Europe», precipitation

AR5 WGI SPM - Approved version / subject to final copyedit

North Europe - Map of precipitation changes in 2081–2100 with respect to 1986–2005 in the RCP8.5 scenario (annual)

Extreme weather and climate events

_	Phenomenon and direction of trend	Assessment that changes occurred (typically since 1950 unless otherwise indicated)	Assessment of a human contribution to observed changes	Likelihood of further changes	
				Early 21st century	Late 21st century
	Warmer and/or fewer cold days and nights over most land areas	Very likely	Very likely	Likely	Virtually certain
	Warmer and/or more frequent hot days and nights over most land areas	Very likely	Very likely	Likely	Virtually certain
	Warm spells/heat waves. Frequency and/or duration increases over most land areas	<i>Medium confidence</i> on a global scale Likely in large parts of Europe, Asia and Australia	Likely	Not formally assessed	Very likely
	Heavy precipitation events. Increase in the frequency, intensity, and/or amount of heavy precipitation	Likely more land areas with increases than decreases	Medium confidence	<i>Likely</i> over many land areas	Very likely over most of the mid- latitude land masses and over wet tropical regions
	Increases in intensity and/or duration of drought	<i>Low confidence</i> on a global scale Likely changes in some regions	Low confidence	Low confidence	<i>Likely (medium confidence)</i> on a regional to global scale
	Increases in intense tropical cyclone activity	Low confidence in long term (centennial) changes Virtually certain in North Atlantic since 1970	Low confidence	Low confidence	<i>More likely than not</i> in the Western North Pacific and North Atlantic
1	Increased incidence and/or magnitude of extreme high sea level	Likely (since 1970)	Likely	Likely	Very likely

IPCC, AR5, Table SPM.1

Since 1950, extreme hot days and heavy precipitation have become more common

There is evidence that anthropogenic influences, including increasing atmospheric greenhouse gas concentrations, have changed these extremes

Changes in Extremes: Storms in North Atlantic

Since the 1970s, it is *virtually certain* that the frequency and intensity of storms in the North Atlantic has increased although the reasons for this increase are debated...

Ocean Acidification, for RCP 8.5 (orange) & RCP2.6 (blue)

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

INTERGOVERNMENTAL PANEL ON Climate change

Oceans are Acidifying Fast

Changes in pH over the last 25 million years

"Today is a rare event in the history of the World"

• It is happening now, at a speed and to a level not experienced by marine organisms for about 60 million years

•Mass extinctions linked to previous ocean acidification events

• Takes 10,000's of years to recover

Turley et al. 2006

Slide courtesy of Carol Turley, PML

 RCP2.6 (2081-2100), *likely* range:
 26 to 55 cm

 RCP8.5 (in 2100), *likely* range:
 52 to 98 cm

Cumulative emissions of CO_2 largely determine global mean surface warming by the late 21st century and beyond.

Limiting climate change will require substantial and sustained reductions of greenhouse gas emissions.

Limiting warming to *likely* less than 2° C since 1861-1880 requires cumulative CO₂ emissions to stay below 1000 GtC. Until 2011, over 50% of this amount has been emitted.

Accounting for other forcings, the upper amount of cumulative CO_2 emissions is 800 GtC; over 60% have been emitted by 2011.

Change in average precipitation (1986–2005 to 2081–2100)

We have a choice.

Compatible fossil fuel emissions simulated by the CMIP5 models for the four RCP scenarios

AR5 WGITS – Approved version/subject to final copy edit

Conclusion:

IPCC is eager to continue serving the climate and sustainable development process, with policy relevance, without being policyprescriptive

- www.ipcc.ch : IPCC
- www.climatechange2013.org : IPCC WGI AR5
- www.climate.be/vanyp : my slides and other documents
- www.skepticalscience.com: excellent responses to contrarians arguments
 On Twitter: @JPvanYpersele

Jean-Pascal van Ypersele (vanypersele@astr.ucl.ac.be)